Bilinear Fourier Integral Operators

نویسنده

  • LOUKAS GRAFAKOS
چکیده

We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of order zero supported away from the axes and the antidiagonal, we show that boundedness holds in the local-L case. Stronger conclusions are obtained for more restricted classes of symbols and phases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

The Fourier Extension Operator on Large Spheres and Related Oscillatory Integrals

We obtain new estimates for a class of oscillatory integral operators with folding canonical relations satisfying a curvature condition. The main lower bounds showing sharpness are proved using Kakeya set constructions. As a special case of the upper bounds we deduce optimal L(S) → L(RS) estimates for the Fourier extension operator on large spheres in R, which are uniform in the radius R. Two a...

متن کامل

2 1 Se p 20 06 THE FOURIER EXTENSION OPERATOR ON LARGE SPHERES AND RELATED OSCILLATORY

We obtain new estimates for a class of oscillatory integral operators with folding canonical relations satisfying a curvature condition. The main lower bounds showing sharpness are proved using Kakeya set constructions. As a special case of the upper bounds we deduce optimal L p (S 2) → L q (RS 2) estimates for the Fourier extension operator on large spheres in R 3 , which are uniform in the ra...

متن کامل

. C A ] 4 A ug 2 00 6 THE FOURIER EXTENSION OPERATOR ON LARGE SPHERES AND RELATED OSCILLATORY

We obtain new estimates for a class of oscillatory integral operators with folding canonical relations satisfying a curvature condition. The main lower bounds showing sharpness are proved using Kakeya set constructions. As a special case of the upper bounds we deduce optimal L(S) → L(RS) estimates for the Fourier extension operator on large spheres in R, which are uniform in the radius R. Two a...

متن کامل

Positive-definiteness, Integral Equations and Fourier Transforms

We show that positive definite kernel functions k(x, y), if continuous and integrable along the main diagonal, coincide with kernels of positive integral operators in L2(R). Such an operator is shown to be compact; under the further assumption k(x, x) → 0 as |x| → ∞ it is also trace class and the corresponding bilinear series converges absolutely and uniformly. If k1/2(x, x) ∈ L1(R), all these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010